Source code for pandablocks.hdf

import logging
import queue
import threading
from typing import Any, Callable, Dict, List, Optional, Type

import h5py
import numpy as np

from pandablocks.commands import Arm

from .asyncio import AsyncioClient
from .connections import SAMPLES_FIELD
from .responses import EndData, FieldCapture, FrameData, ReadyData, StartData


[docs]class Pipeline(threading.Thread): """Helper class that runs a pipeline consumer process in its own thread""" #: Subclasses should create this dictionary with handlers for each data #: type, returning transformed data that should be passed downstream what_to_do: Dict[Type, Callable] downstream: Optional["Pipeline"] = None def __init__(self): super().__init__() self.queue: queue.Queue[Any] = queue.Queue() # type: ignore def run(self): while True: data = self.queue.get() if data is None: # stop() called below break else: func = self.what_to_do.get(type(data), None) if func: # If we have a handler, use it to transform the data data = func(data) if self.downstream: # Pass the (possibly transformed) data downstream self.downstream.queue.put_nowait(data)
[docs] def stop(self): """Stop the processing after the current queue has been emptied""" self.queue.put(None)
[docs]class HDFWriter(Pipeline): """Write an HDF file per data collection. Each field will be written in a 1D dataset ``/<field.name>.<field.capture>``. Args: scheme: Filepath scheme, where %d will be replaced with the acquisition number, starting with 1 """ def __init__(self, scheme: str): super().__init__() self.num = 1 self.scheme = scheme self.hdf_file: Optional[h5py.File] = None self.datasets: List[h5py.Dataset] = [] self.what_to_do = { StartData: self.open_file, list: self.write_frame, EndData: self.close_file, } def create_dataset(self, field: FieldCapture, raw: bool): # Data written in a big stack, growing in that dimension assert self.hdf_file, "File not open yet" if raw and (field.capture == "Mean" or field.scale != 1 or field.offset != 0): # Processor outputs a float dtype = np.dtype("float64") else: # No processor, datatype passed through dtype = field.type return self.hdf_file.create_dataset( f"/{field.name}.{field.capture}", dtype=dtype, shape=(0,), maxshape=(None,), ) def open_file(self, data: StartData): file_path = self.scheme % self.num self.hdf_file = h5py.File(file_path, "w", libver="latest") raw = data.process == "Raw" self.datasets = [self.create_dataset(field, raw) for field in data.fields] self.hdf_file.swmr_mode = True logging.info( f"Opened '{file_path}' with {data.sample_bytes} byte samples " f"stored in {len(self.datasets)} datasets" ) def write_frame(self, data: List[np.ndarray]): for dataset, column in zip(self.datasets, data): # Append to the end, flush when done written = dataset.shape[0] dataset.resize((written + column.shape[0],)) dataset[written:] = column dataset.flush() def close_file(self, data: EndData): assert self.hdf_file, "File not open yet" self.hdf_file.close() self.hdf_file = None logging.info( f"Closed '{self.scheme % self.num}' after writing {data.samples} " f"samples. End reason is '{data.reason.value}'" ) self.num += 1
[docs]class FrameProcessor(Pipeline): """Scale field data according to the information in the StartData""" def __init__(self): super().__init__() self.processors: List[Callable] = [] self.what_to_do = { StartData: self.create_processors, FrameData: self.scale_data, } def create_processor(self, field: FieldCapture, raw: bool): column_name = f"{field.name}.{field.capture}" if raw and field.capture == "Mean": return ( lambda data: data[column_name] * field.scale / data[SAMPLES_FIELD] + field.offset ) elif raw and (field.scale != 1 or field.offset != 0): return lambda data: data[column_name] * field.scale + field.offset else: return lambda data: data[column_name] def create_processors(self, data: StartData) -> StartData: raw = data.process == "Raw" self.processors = [self.create_processor(field, raw) for field in data.fields] return data def scale_data(self, data: FrameData) -> List[np.ndarray]: return [process(data.data) for process in self.processors]
[docs]def create_pipeline(*elements: Pipeline) -> List[Pipeline]: """Create a pipeline of elements, wiring them and starting them before returning them""" pipeline: List[Pipeline] = [] for element in elements: if pipeline: pipeline[-1].downstream = element pipeline.append(element) element.start() return pipeline
[docs]def stop_pipeline(pipeline: List[Pipeline]): """Stop and join each element of the pipeline""" for element in pipeline: # Note that we stop and join each element in turn. # This ensures all data is flushed all the way down # even if there is lots left in a queue element.stop() element.join()
[docs]async def write_hdf_files( client: AsyncioClient, scheme: str, num: int = 1, arm: bool = False ): """Connect to host PandA data port, and write num acquisitions to HDF file according to scheme Args: client: The `AsyncioClient` to use for communications scheme: Filenaming scheme for HDF files, with %d for scan number starting at 1 num: The number of acquisitions to store in separate files arm: Whether to arm PCAP at the start, and after each successful acquisition """ counter = 0 pipeline = create_pipeline(FrameProcessor(), HDFWriter(scheme)) try: async for data in client.data(scaled=False, flush_period=1): pipeline[0].queue.put_nowait(data) if type(data) in (ReadyData, EndData): if counter == num: # We produced the right number of frames break elif arm: # Told to arm at the beginning, and after each acquisition ends await client.send(Arm()) counter += 1 finally: stop_pipeline(pipeline)